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Abstract

This paper investigates the two fifth-order Fujimoto-Watanabe equations from the perspective
of the group theoretic approach. We identify the reduced equations that lead to the solutions
of these high order equations. Furthermore, the corresponding solutions are found by power
series due to their nonlinear characteristics. As a result, the findings of the study demonstrate
the convergence of solutions for such models and identifies the travelling wave solutions.
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1 Introduction

In a remarkable paper, Fujimoto-Watanabe [5], explored two fifth-order equations

A : ut = u5uxxxxx + 5u4
(
uxuxxxx + 2uxxuxxx

)
, (1)

B : ut = u5uxxxxx + 5u4
(
uxuxxxx +

1

2
uxxuxxx

)
+

15

4
u3u2xuxxx. (2)

The full classification of fifth-order evolution equations [5] is too long and tedious, that it was not
found, unlike the case of third-order evolution equations. As a special consideration, (1) and (2)
may bemapped onto the Sawada-Kotera [26] andKaup [14] equations via a Schwarzian derivative
[24], and via the inverse scattering transform technique at zero spectral parameter [25]. Due to
these properties, the above equations have applications in fluid dynamics, ion-acoustic waves in
plasmas and nonlinear shallow water wave phenomena, to name a few. These equations are also
important to study from other perspectives, as interesting notions may apply, such as the inverse
scattering technique. The third-order class has been investigated [6].

As an instrument in the study of all possible types of differential equations, transformations are
the heart and soul of analytical solution techniques. Furthermore, transformative methods may
sometimes be used in conjunctionwith numerical approaches. Explicitly, transformations simplify
the equation, either by creating an easier form of the equation, or through combining variables,
and thereby decreasing the number of variables. The only challenge, of course, is the calculation
of such transformations. However, these days, symmetry methods are the most reliable method
to generate transformations of most differential equations.

Under the umbrella of solutions to differential equations, we have the concept that a symmetry
of a differential equation is a transformation (ormapping) of its solutionmanifold into itself [2]. In
otherwords, these transformationsmap any solution of the given equation into another solution of
the same equation [3], where invariant or similarity solutions are those that map into themselves
[13]. Of special interest, are point symmetries with regards to double reductions [9], invariance
analysis [10], optimal systems [11], difference equations [8], delay equations [16], and quintic
nonlinear equations [27].

In terms of partial differential equations, the invariance under a one-parameter Lie group of
transformations enacts a reduction of the number of independent variables, while with ordinary
differential equations, the ordermay be reduced. The infinitesimal generator of the transformation
is applied so that solutions arise constructively. We can easily list more applications of symme-
tries; namely: the determination of conservation laws [17] and its admitted solutions (periodic
solutions [7], Noetherian related ones [4] or a standard group analysis solution [20]), lineariza-
tion techniques [18], finding integrating factors [19] and canonical coordinates.

In this paper, we explore Lie symmetry reductions of this family of equations, which are natu-
rally of high order, and therefore must be solved using special techniques. Such a technique that
works well, is the power series approach.

The organisation of the study is provided next. In the next section, we display the symmetry
invariant properties admitted by the first equation, with its commutator, adjoint and group spec-
ifications. Section 3 has the associated symmetry details for the second equation. In Section 4, we
have a demonstration of the convergence of solutions for our fifth-order reduced equations. The
conclusion is given in Section 5.
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2 Case A

Let us invoke a Lie group of (one-parameter) infinitesimal (ε ≪ 1) mappings, for x, t, u to
x+ ε ξ̂, t+ ε τ̂ and u→ u+ ε ϕ̂, respectively and with ϕ̂, ξ̂ and τ̂ as functions of (x, t, u).

Now, a symmetry vector field isX = ϕ̂ ∂u+ξ̂ ∂x+τ̂ ∂t, where the unknown coefficient functions
in (x, t, u) are given by the standard Lie symmetry determining condition. Omitting the detailed
calculations (see [12] for a simple discussion or for further examples: a classical scenario [22], a
fractional context [15] and a travelling wave case [28]).

The Lie point symmetries of (1) are four, viz,

X1 = ∂x, X2 = ∂t, X3 = u∂u + x∂x, X4 = 5t∂t + x∂x, X5 = 2ux∂u + x2∂x. (3)

The Lie brackets of (3) are given in Table 1 where [Xj , Xk] is the commutator given by

[Xj , Xk] = XjXk −XkXj .

Table 1: Lie brackets.

[,] X1 X2 X3 X4 X5

X1 0 0 X1 X1 2X3

X2 0 0 0 5X2 0
X3 −X1 0 0 0 X5

X4 −X1 −5X2 0 0 X5

X5 −2X3 0 −X5 −X5 0

The one-parameter groupsMj (j = 1, . . . , 4) of the symmetries Xj , are

M1 : (x, t, u) 7→ (x+ ε, t, u), (4)
M2 : (x, t, u) 7→ (x, t+ ε, u), (5)
M3 : (x, t, u) 7→ (eεx, t, eεu), (6)
M4 : (x, t, u) 7→ (eεx, e5εt, u), (7)

M5 : (x, t, u) 7→
(

x

−1 + xε
, t,

u

(−1 + xε)2

)
. (8)

The adjoints are given in Table 2 and we define the optimal system of one-dimensional subal-
gebras for Cases A. The approach for obtaining the one-dimensional optimal system is taken from
[21] and involves the formula

Ad
(
exp(ϵXj)

)
Xk = Xk − ϵ

[
Xj , Xk

]
+

1

2
ϵ2
[
Xj ,

[
Xj , Xk

]]
− . . . .
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Table 2: Adjoint’s.

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 − εX1 X4 − εX1 ε2X1 − 2εX3 +X5

X2 X1 X2 X3 X4 − 5εX2 X5

X3 eεX1 X2 X3 X4 e−εX5

X4 eεX1 e5εX2 X3 X4 e−εX5

X5 ε2X5 + 2εX3 +X1 X2 εX5 +X3 εX5 +X4 X5

Here, we consider,

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5, (9)

where the ais are arbitrary constants, and simplify this by the applications of adjoint maps.

Suppose firstly that a3 ̸= 0, thenwe can assume that a3 = 1. Ifwe act onX byAd

(
exp

(
1

2a5

)
X1

)
,

we get

X
′
= a11X1 + a2X2 + a4X4 + a5X5,

a5 ̸= 0, and the scalar a11 depends on a1, a4, a5. Now acting onX ′ by Ad

(
exp

(
a2
5a4

)
X2

)
results

in X ′′
= a11X1 + a4X4 + a5X5, a4 ̸= 0. Next, Ad

(
exp

(
c3X3

))
on X ′′ yields,

X4, aX4 ±X1, aX4 ±X5, aX4 ±X5 ±X1. (10)

If a5 = 0, then X = a1X1 + a2X2 +X3 + a4X4. We act on X by Ad

(
exp

(
a2
5a4

)
X2

)
and obtain

X
′
= a1X1 +X3 + a4X4,

a4 ̸= 0. Further acting on X ′ by Ad
(
exp

(
c2X3

))
gives

X3 + aX4, X3 + aX4 ±X1. (11)

If a4 = 0, then we act onX = a1X1+a2X2+X3 by Ad
(
exp

(
a1X1

))
and obtainX ′

= X3+a2X2,

and further acting on X ′ by Ad
(
exp

(
c2X4

))
gives rise to

X3, X3 ±X2. (12)

If a5 ̸= 0, a4 = 0, then X ′
= a11X1 + a2X2 + a5X5. Acting on X ′ by Ad

(
exp

(
c2X3

))
one obtains

bX2 ±X5, bX2 ±X5 ±X1. (13)

If a3 = 0, a4 = 1, then we act on X = a1X1 + a2X2 +X4 + a5X5 by Ad

(
exp

(
a2
5

)
X2

)
and get

X
′
= a1X1 +X4 + a5X5. Further acting on X ′ by Ad

(
exp

(
c3X3

))
gives

X4, X4 ±X1, X4 ±X5, X4 ±X5 ±X1. (14)
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Assume now a4 = a3 = 0, a5 = 1, then we act on X = a1X1 + a2X2 + X5 by Ad
(
exp

(
c1X3

))
which yields X5, X5 ±X1, X5 ±X2, X5 ±X1 ±X2.

Now assume that a5 = a4 = a3 = 0, a1 = 1, we act on X = X1 + a2X2 by Ad
(
exp

(
c1X3

))
which gives rise to X1, X1 ± X2. Next, suppose that a1 = a5 = a4 = a3 = 0, a2 = 1 that yields
X2. Now, the above discussion gives rise to the optimal system of one-dimensional subalgebras
for this case,

aX4 + δX5 + ϵX1, X2, aX4 +X3 + ϵX1, bX2 + δX5 + ϵX1,

X3 + ϵX2, X4 + ϵX1, X1 + ϵX2,

where a(̸= 0), b are constants, δ = ±1 and ϵ = 0,±1.

2.1 Symmetry invariant reductions

In this subsection, we apply a Lie reduction technique, whereby zero-order invariants trans-
form the order of the given partial differential equation. This procedure results in reduced equa-
tions that are difficult to solve bymost analytical techniques. We instead apply series to determine
explicit solutions for (1).

A reduction of the equation by the symmetry vectors X1 +X2 (ϵ = 1) produces the ordinary
differential equation

y′(z)
(
1 + 5y(z)4y′′′′(z)

)
+ y(z)4

(
5y′′(z)y′′′(z) + y(z)y(5)(z)

)
= 0, (15)

where z = −x+ t and u(x, t) = y(z). Next, the power series

y(z) =

∞∑
r1=0

ar1z
r1 , (16)

is entered into (15). We see that a0, a1, a2, a3, a4 are the arbitrary constants and that a solution
reads as

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 +

(
− 60a2a3a

4
0 − 120a1a4a

4
0 − a1

)
z5

120a50

+
z6

360a50

(
− 90a23a

4
0 − 240a2a4a

4
0 − 120a1a2a3a

3
0 − 240a21a4a

3
0 − a2

−
5a1
(
− 60a2a3a

4
0 − 120a1a4a

4
0 − a1

)
a0

)
+ . . . .

(17)

Hence a solution for (1) may be obtained by reversing the transformation, namely,

u(x, t) = a0 + a1 (−x+ t) + a2 (−x+ t)
2
+ a3 (−x+ t)

3

+ a4 (−x+ t)
4
+

(
−60a2a3a

4
0 − 120a1a4a

4
0 − a1

)
(−x+ t)

5

120a50

+
(−x+ t)

6

360a50

(
− 90a23a

4
0 − 240a2a4a

4
0 − 120a1a2a3a

3
0 − 240a21a4a

3
0 − a2

−
5a1

(
−60a2a3a

4
0 − 120a1a4a

4
0 − a1

)
a0

)
+ . . . .

(18)
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The question arises of whether such a series solution converges or not. We answer this question
in Section 4.

Suppose we consider the next reduction from the list of optimal one-dimensional subalgebras,
that is, aX4 + δX5 + ϵX1. This symmetry produces the invariant,

z = t exp

−
10a tan−1

(
a√

4δϵ−a2
+ 2δx√

4δϵ−a2

)
√
4δϵ− a2

 ,

where

u(x, t) =
(
ax+ δx2 + ϵ

)
exp

−
2a tan−1

(
a+2δx√
4δϵ−a2

)
√
4δϵ− a2

 y (z) . (19)

In this instance, (1) reduces to the high-order nonlinear ordinary differential equation

16aδϵ
(
3a2 + 4δϵ

)
y(z)6 + y′(z)

+ 125a3δ2y(z)4

(
84
(
10a2 + δϵ

)
y′(z)2 + 50a2δ2y′′(z)

(
18y′′(z) + 5zy′′′(z)

)
+ 5y′(z)

(
12
(
48a2 + 8ϵ

)
y′′(z) + 5a2δ + 5a2z

(
48y′′′(z) + 5zy′′′(z)

)))

+ 5azy(z)5

(
4
(
756a4 + 327a2δϵ+ 16δ2ϵ2

)
y′(z) + 25a2δ

(
84
(
10a2 + 8ϵ

)
y′′(z)

+ 5z
(
4
(
48a2 + 8ϵ

)
y′′′(z) 5a2z

(
12y′′′′(z) + zy(z)(z)

))))
= 0.

(20)

By the same procedure, that is the power series (16), we find the series solution (ϵ = 1),

y(z) = a0 − 16a
(
3a2 + 4

)
a60z − 2

(
3a2 + 4

) (
− 60480a6a110 − 27312a4a110 − 2816a2a110

)
z2

− 8

3

(
5779200a7

(
3a2 + 4

)2
a160 + 1405440a5 ×

(
3a2 + 4

)2
a160 + 81920a3

(
3a2 + 4

)2
a160

− 60060a5
(
3a2 + 4

)
×
(
− 60480a6a110 − 27312a4a110 − 2816a2a110

)
a50

− 8592a3 ×
(
3a2 + 4

) (
−60480a6a110 − 27312a4a110 − 2816a2a110

)
a50

− 256a
(
3a2 + 4

) (
−60480a6a110 − 27312a4a110 − 2816a2a110

)
× a50

)
z3 + . . . ,

(21)

which may be transformed into a solution in u(x, t), using (19), for equation (1).

Similarly, a reduction of equation (1) by the symmetry vector X2 gives

y(z)y(5)(z) + 5y(4)(z)y′(z) + 5y(3)(z)y′′(z) = 0,
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where u = y(z), z = x, and the series solution is

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 +

(−a2a3 − 2a1a4) z
5

2a0

+

(
−3a23 − 8a2a4 − 6a1(−a2a3−2a1a4)

a0

)
z6

12a0

+

(
−

7
(
−3a2

3−8a2a4− 6a1(−a2a3−2a1a4)
a0

)
a1

4a0
− 12a3a4 − 8a2(−a2a3−2a1a4)

a0

)
z7

21a0
+ . . . .

(22)

Repeating this idea, with the symmetryX4+ ϵX1, we have the transformation z = t

(x+ ϵ)5
where

u = y(z). Hence, the reduced equation is (ϵ = 1)

y′(z)

(
625z3y(z)4

(
576y′′(z) + 5z

(
48y(3)(z) + 5zy(4)(z)

))
+ 15120zy(z)5 + 1

)

+ 105000z2y(z)4y′(z)2 + 625z2y(z)4

(
10z2y′′(z)

(
18y′′(z) + 5zy(3)(z)

)
+ y(z)

(
5z3y(5)(z) + 60z2y(4)(z) + 168y′′(z) + 192zy(3)(z)

))
= 0,

(23)

with series solution,
y(z) = a0 + a1z − 7560a1a

5
0z

2 − 280
(
215a40a

2
1 − 2162160a100 a1

)
z3

− 120

(
− 38064600a21a

9
0 − 813960

(
215a40a

2
1 − 2162160a100 a1

)
a50 + 1190a31a

3
0

)
z4 + . . . .

(24)

Next, the symmetry combinationX3+ ϵX2 results in the invariant z = t− ϵ log(x), u(x, t) = xy(z),
so that the reduced equation is

y′(z)

(
1 + 4ϵy(z)5 + 5y(z)4

(
− 3ϵy′′(z) + ϵ5y′′′′(z)

))
+ ϵ3y(z)4

(
10ϵ2y′′(z)y′′′(z) + y(z)

(
− 5y′′′(z) + ϵ2y(5)(z)

))
= 0.

(25)

Here, we find the solution (ϵ = 1),

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4

+

(
−4a1a

5
0 + 30a3a

5
0 + 30a1a2a

4
0 − 120a2a3a

4
0 − 120a1a4a

4
0 − a1

)
z5

120a50
+ . . . .

(26)

In the penultimate reduction, we use the vector bX2 + δX5 + ϵX1, so that

z =

√
δt
√
ϵ− b tan−1

(√
δx√
ϵ

)
√
δ
√
ϵ

,

and u(x, t) =
(
δx2 + ϵ

)
y (z). Eq. (1) becomes

y′(z)

(
1 + 64bδ2ϵ2y(z)5 + 5y(z)4

(
12b3δϵy′′(z) + b5y′′′(z)

))
+ b3y(z)4

(
10b2y′′(z)y′′′(z) + y(z)

(
20δϵy′′′(z) + b2y(5)(z)

))
= 0,

(27)
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with solution (ϵ = 1),

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4

+
z5
(
− 120a40a1a2b

3δ − 120a50a3b
3δ − 120a40a2a3b

5 − 120a40a1a4b
5 − 64a50a1bδ

2 − a1

)
120a50b

5

+ . . . .

(28)

Finally, the symmetry aX4+X3+ϵX1,with z = t(ax+x+ϵ)−
5a

a+1 , and u(x, t) = (ax+x+ϵ)
1

a+1 y (z),
produces the reduction

4a
(
1 + 4a+ a2 − 6a3

)
y(z)6 + y′(z)

+ 125a3z2y(z)4

(
21
(
− 1− 21 + 40a2

)
y′(z)2 + 50a2z2y′′(z)

(
18y′′(z) + 5zy′′′(z)

)
+ 5zy′(z)

((
− 3− 6a+ 576a2

)
y′′(z) + 5a2z

(
48y′′′(z) + 5zy′′′′(z)

)))

+ 5azy(z)5

((
4 + 16a− 311a2 − 654a3 + 3024a4

)
y′(z) + 25a2z

(
21
(
− 1− 2a+ 40a2

)
y′′′(z)

+ 5z
((

− 1− 2a+ 192a2
)
y′′′(z) + 5a2z

(
12y′′′′(z) + zy(5)

))))
= 0,

(29)

with solution

y(z) = a0 + a1z +
1

2

(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
z2

− 4

3

(
45150a40a

2
1a

5 − 5490a40a
2
1a

4 − 2585a40a
2
1a

3 + 160a40a
2
1a

2 + 40a40a
2
1a

+ 30030a50

(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
a5

− 2148a50 ×
(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
a4

− 1042a50

(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
a3

+ 32a50

(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
a2

+ 8a50

(
− 15120a5a1a

5
0 + 3414a4a1a

5
0 + 1531a3a1a

5
0 − 176a2a1a

5
0 − 44aa1a

5
0

)
a

)
z3

+ . . . .

(30)

3 Case B

We now turn to Case B with a similar analysis. The Lie point symmetries of Eq. (2) are

X1 = ∂x, X2 = ∂t, X3 = 5t∂t − u∂u, (31)
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and the Lie commutator brackets of (31) are displayed in Table 3.

Table 3: Lie brackets.

[, ] X1 X2 X3

X1 0 0 0
X2 0 0 5X2

X3 0 −5X2 0

Thus, we have the relevantMj of this case are

M1 : (x, t, u) 7→ (x+ ε, t, u), (32)
M2 : (x, t, u) 7→ (x, t+ ε, u), (33)
M3 : (x, t, u) 7→ (x, e5εt, eεu). (34)

The adjoints are given in Table 4.

Table 4: Adjoint’s.

Ad X1 X2 X3

X1 X1 X2 X3

X2 X1 X2 X3 − 5εX2

X3 X1 e5εX2 X3

We consider

X = a1X1 + a2X2 + a3X3, (35)

where the ais are arbitrary constants, and as before simplify it by adjoint maps.

Suppose first that a3 ̸= 0, thenwe can assume that a3 = 1. Ifwe act onX byAd

(
exp

(
a2
5

)
X2

)
we get

X3 + aX1. (36)

If a3 = 0, a2 = 1, then we act onX = a1X1 +X2 by Ad
(
exp

(
c1X3

))
results inX2,X2 ±X1. Next

suppose that a3 = a2 = 0, a1 = 1 gives X1. Now, the above procedure gives for this case, the one
dimensional subalgebras

X1, X3 + aX1, X2 + ϵX1,

where a is a constant and ϵ = 0,±1.

3.1 Symmetry invariant reductions

A reduction by X1 gives

y′(t) = 0, (37)

565



B. Gwaxa et al. Malaysian J. Math. Sci. 17(4): 557–573(2023) 557 - 573

with u(x, t) = y(t). If one solves this, we get

y(t) = c1, (38)

which is a trivial constant solution.

Reducing the equation (2) by X2 + ϵX1 gives

y′(z)
(
2ϵ5 − 15ϵy(z)3y′′′(z) + 10y(z)4y′′′′(z)

)
+ y(z)4

(
5y′′(z)y′′′(z) + 2y(z)y′′′′′(z)

)
= 0, (39)

where z = −x+ tϵ

ϵ
and u(x, t) = y(z). The power series solution we find is (ϵ = 1)

y(z) = a0 + a1z + a2z
2 + a3z

3 +

(
−30a2a3a

4
0 + 45a1a3a

3
0 − a1

)
z4

120a40a1
+ . . . . (40)

Reducing the equation by X3 + aX1 gives the ordinary differential equation

17y(z)6 + 2a5y′(z)− 375z2y(z)3y′(z)

(
43y′(z) + 5z

(
18y′′(z) + 5zy′′′(z)

))
+ 25zy(z)4

(
4095zy′(z)2 + 5z

(
− 3ae

x
a + 25z2y′′(z)

)(
18y′′(z) + 5zy′′′(z)

)
+ y′(z)

(
− 132a+ 16275z2y′′(z) + 9375z3y′′′(z) + 1250z4y′′′(z)

))
+ 5y(z)5

(
− 3a+ 5960zy′(z) + 41625z2y′′(z) + 47875z3y′′′(z)

+ 15000z4y′′′′(z) + 1250z5y′′′′′(z)

)
= 0,

(41)

where z = e
5x
a t and u = e

x
a y(z). Hence a solution is

y(z) = a0 +
1

2

(
15a50 − 17a60

)
z +

1

4

(
3375

2
a40
(
15a50 − 17a60

)
− 14951a50

(
15a50 − 17a60

))
z2

+
1

6

(
− 118988

(
3375

2
a40
(
15a50 − 17a60

)
− 14951a50

(
15a50 − 17a60

))
a50

+
20175

4

(
3375

2
a40
(
15a50 − 17a60

)
− 14951a50

(
15a50 − 17a60

))
a40

− 125815

2

(
15a50 − 17a60

)2
a40 +

29475

4

(
15a50 − 17a60

)
2a30

)
z3 + . . . .

(42)
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4 Convergence of Series

In this section, we demonstrate the convergence properties [1] associated with the above solu-
tion types. Suppose we observe Eq. (15) with (16) substituted into it, viz.

∞∑
r1=0

(
(r1 + 1)ar1+1 +

r1∑
r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

( r5∑
r6=0

ar6ar5−r6ar4−r5ar3−r4ar2−r3ar1−r2+5(r1 − r2 + 4)

× (r1 − r2 + 3)(r1 − r2 + 2)(r1 − r2 + 1)

)
+

(
5ar5ar4−r5ar3−r4ar2−r3(r2 + 2)(r2 + 1)ar2+2(r1 − 2r2 + 3)(r1 − 2r2 + 2)

× (r1 − 2r2 + 1)ar1−2r2+3

)
+

(
5ar5ar4−r5ar3−r4ar2−r3ar2+1ar1−2r2+4(r1 − 2r2 + 4)(r1 − 2r2 + 3)

× (r1 − 2r2 + 2)(r1 − 2r2 + 1)

))
zr1 = 0.

(43)

Therefore, by extensive manipulation, the coefficients are generated by

ar1+5 = − (r1 + 1)ar1+1

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

−
r1∑

r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

(
5ar5ar4−r5ar3−r4ar2−r3(r2 + 2)(r2 + 1)ar2+2

× (r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)ar1−2r2+3

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

+ 5ar5ar4−r5ar3−r4ar2−r3ar2+1ar1−2r2+4

× (r1 − 2r2 + 4)(r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

)

−
r1∑

r2=1

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

r5∑
r6=0

ar6ar5−r6ar4−r5ar3−r4ar2−r3

× ar1−r2+5(r1 − r2 + 4)(r1 − r2 + 3)(r1 − r2 + 2)(r1 − r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)
,

(44)

for r1 ≥ 0, such that (17) reads as

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 +

∞∑
r1=0

ar1+5z
r1+5. (45)

567



B. Gwaxa et al. Malaysian J. Math. Sci. 17(4): 557–573(2023) 557 - 573

Next, from Eq. (44) we obtain

|ar1+5| ≤M

(
|ar1+1|+

r1∑
r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

(
|ar5 ||ar4−r5 ||ar3−r4 ||ar2−r3 ||ar2+2||ar1−2r2+3|

+ |ar5 ||ar4−r5 ||ar3−r4 ||ar2−r3 ||ar2+1||ar1−2r2+4|
)

+

r1∑
r2=1

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

r5∑
r6=0

|ar6 ||ar5−r6 ||ar4−r5 ||ar3−r4 ||ar2−r3 ||ar1−r2+5|

)
,

(46)

where r1 = 0, 1, 2, . . ., andM =
1

a50
.

Consider the series µ̂ = R(z) =

∞∑
r1=0

pr1z
r1 where

pk = |ak|, k = 0, . . . , 4, (47)

and

pr1+5 =M

(
pr1+1 +

r1∑
r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

(
pr5pr4−r5pr3−r4pr2−r3pr2+2pr1−2r2+3

+ pr5pr4−r5pr3−r4pr2−r3pr2+1pr1−2r2+4

)
+

r1∑
r2=1

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

r5∑
r6=0

pr6pr5−r6pr4−r5pr3−r4pr2−r3pr1−r2+5

)
.

(48)

Hence,

|ar1 | ≤ pr1 , r1 = 0, 1, 2, . . . . (49)

We are now required to show that µ̂ converges. The series µ̂ is a majorant series of equation (45)
so that:

R(z) = p0 + p1z + p2z
2 + p3z

3 + p4z
4 +

∞∑
r1=0

pr1+5z
r1+5

= p0 + p1z + p2z
2 + p3z

3 + p4z
4 +M

[
R5 +Rγ(z) + ν(z)

]
, (50)

where ν(z) = θ(z) − p50, with θ(z) and γ(z) are polynomial expressions such that every term
contains a power of at least one in z. Then, let

H(z, µ̂) = µ̂− p0 − p1z − p2z
2 −M

[
R5 +Rγ(z) + ν(z)

]
, (51)

be an implicit function such that H(0, p0) = 0 and Hµ̂(0, p0) = −5Mp40 + 1 ̸= 0. We now invoke
the implicit function theorem [23], seeing that µ̂ is convergent and analytic in the neighbourhood
of (0, p0) in the plane, and with a positive radius. We conclude that (45) is convergent in the same
neighbourhood.
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Hence, solution (45) is expressed as,

y(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4

+

∞∑
r1=0

(
− (r1 + 1)ar1+1

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

−
r1∑

r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

(
5ar5ar4−r5ar3−r4ar2−r3(r2 + 2)(r2 + 1)ar2+2

× (r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)ar1−2r2+3

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

+ 5ar5ar4−r5ar3−r4ar2−r3ar2+1ar1−2r2+4

× (r1 − 2r2 + 4)(r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

)
−

r1∑
r2=1

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

r5∑
r6=0

ar6ar5−r6ar4−r5ar3−r4ar2−r3

× ar1−r2+5(r1 − r2 + 4)(r1 − r2 + 3)(r1 − r2 + 2)(r1 − r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

)
zr1+5.

(52)

Consequently, the exact series of (1) is constructed as follows,

u(x, t) = a0 + a1 (−x+ t) + a2 (−x+ t)
2
+ a3 (−x+ t)

3
+ a4 (−x+ t)

4

+

∞∑
r1=0

(
− (r1 + 1)ar1+1

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

−
r1∑

r2=0

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

(
5ar5ar4−r5ar3−r4ar2−r3(r2 + 2)(r2 + 1)ar2+2

× (r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)ar1−2r2+3

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

+ 5ar5ar4−r5ar3−r4ar2−r3ar2+1ar1−2r2+4

× (r1 − 2r2 + 4)(r1 − 2r2 + 3)(r1 − 2r2 + 2)(r1 − 2r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

)
−

r1∑
r2=1

r2∑
r3=0

r3∑
r4=0

r4∑
r5=0

r5∑
r6=0

ar6ar5−r6ar4−r5ar3−r4ar2−r3

× ar1−r2+5(r1 − r2 + 4)(r1 − r2 + 3)(r1 − r2 + 2)(r1 − r2 + 1)

a50(r1 + 5)(r1 + 4)(r1 + 3)(r1 + 2)(r1 + 1)

)
(−x+ t)

r1+5
,

(53)

where a0 ̸= 0, a1, a2, a3, a4 are arbitrary constants. Eq. (44) may then be applied to obtain the
rest of the constants. This systematic approach generates the solution (17).

Analogously, albeit tediously, it is easy to test for convergence of the power series solutions
that correspond to the reduced equations derived above. Furthermore, these series solutions are
also easily transformed into the original variables of the given equations. Due to the voluminous
convergence procedure above, we omit the detailed testing for the other cases. In Figure 1 we
display plots of selected solutions.
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The reductions involving (17) and (40) include a travelling wave variable, based on the invari-
ant obtained from the particular combination of symmetriesX1 andX2, but these plots are of the
truncated series solutions, and hence are, at best, approximate in nature.

We observe that Case A’s truncated solutions grows faster and larger than Case B’s truncated
solution. It is difficult to make any further physical interpretations for the truncated solutions.

(a) (b)

(c) (d)

Figure 1: Graphical description of the analytical solutions with parameter values α = ak = 1: (a) Plot of Eq. (17); (b) 3D plot of Eq. (17);
(c) Plot of Eq. (40); and (d) 3D plot of Eq. (40).

5 Conclusion

Nonlinear partial differential equations have remained a topic of great interest. In this regard,
vast work has been done on the basis of various structures known as point symmetries. However,
when the reduction process yields extremely nonlinear equations as well, the problem of find-
ing solutions becomes more complicated and requires special tools. In such a situation, power
series act as an active medium. Exploring solutions via power series is a simple technique but is
hugely time consuming. Nonetheless, we have successfully demonstrated that symmetries com-
bined with power series are a significant duo in unraveling solutions to difficult equations, and an
added bonus is that there exists ways to address the associated convergence test of the resulting
solutions. The obtained series solutions have been verified by Mathematica.

The novelty of this study is that this is the first time that a symmetry analysis of the fifth-order
Fujimoto-Watanabe equation have been performed. Nonlinear equations are always a challenging
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topic of interest. Secondly, the power series approach has not been applied to these highly nonlin-
ear models before, hence such solutions have been reported here only. There are many studies of
the third-order models but not the fifth-order ones above. Therefore this study offers new knowl-
edge of the invariant properties of the fifth-order models.
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